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1 GRAVITATIONAL PLANE WAVES

1.1 Introduction to Gravitational Waves

By analogy to electromagnetism we expect that there should be gravitational waves
{ moving disturbances in the metric. These should have the following properties:
(a) Gravitational Waves should exist and travel with speed c which is the only Lorentz
invariant velocity and is the relation between space and time.
(b) Every from of matter and energy with which we are familiar has the same
gravitational e�ect { positive attraction. i.e. like having all one sign electric charge
Thus no dipole radiation only quadrupole and higher order.
(c) Gravitational Waves are very weak. Consider two neutron stars of one solar mass
(MNS = M�) and radius rNS = 6 km orbiting each other essentially in contact. (This
is for example, clearly tidal forces will have a very disruptive e�ect on the two neutron
stars.) The characteristic acceleration at the neutron stars is

a =
2GM�

(2rNS)
2 ' 9� 1011m=s2 ' 1011g

The orbital period for half a rotation (symmetric pattern with identical neutron

stars and thus the period of the graviational radiation) is T=2 = 2�=
q
r3=GM� '

10�4 sec, so that the frequency of the gravitational radiation is about 10 kHz.
Consider a test mass at the Earth one parsec away (1 pc = 3.26 light years).

This distance is the distance to the nearest known stars, excepting the Sun, and the
test mass will be in the next section our detector. The acceleration A� from the
gravitaional radiation, i.e. proportional to 1=r rather than 1=r2, is

A =
G (2m�) a

c2r
' 0:09m=s2 ' 10�2g

(d) Detection of gravitational waves is di�cult. Consider a resonant frequency
pendulum tuned to the gravitational waves. Using the formula for a gravitational

pendulum ! =
q
g=`, one �nds that to get f = 104 Hz requires ` = 20�A. (24.8A)

However, the wavelength of the gravitational wave is �GW = c=f '
3x105km=s=104=s = 30 km. Thus a quarter-wavelength long detector would need to
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be about 7.5 km. Thus the single pendulum is not a good match to the gravitational
wave.

The velocity produced by the gravitational wave on the test mass on Earth
is of order V = A=! = A=(2�f) ' 3 � 10�6 m/s. This is a very low velocity and
di�cult to dectect even with the M�ossbauer e�ect. The amplitude of oscillation is
A=(2�f)2 ' 0:5�A.
(e) The generation of gravitational waves is di�cult. Just as it is di�cult to detect
gravitational waves; it is di�cult to generate them. We will �nd that for astrophysical
systems the dimensionaless strain h is roughly

h � rSchwarschild

r

�
v

c

�2

The power in gravitational waves is proportional to the square of the internal power
of the radiating object. The constant of proportionality is equivalent to dividing by
a very large power.

P =
P 2
internal

PcGW
; where PcGW =

c5

G
= 3:63 � 1059erg=s = 2� 105M�=s

1.2 Properties of Gravitational Waves

There are many similarities between gravitation and electromagnetism. In particular
they have similar Poisson Equations relating the �eld to its sources. For
electromagnetism

2A� = 4�J�; where 2A� � @�@
�A��@�@�A� =

1

c2
@2A�

@t2
�@2A�

@x2
�@2A�

@y2
�@2A�

@z2
(1)

where J� is the 4-D electric current and the last equality holds for the gauge condition
@�A

� = 0 and the usual rectilinear coordinates. For gravity one has (in the weak �eld
limit)

2��� = �16�GT �� or @�@
�(h�� � 1

2
���h) = �16�GT �� (2)

where � =
p
16�G �= 2:04�10�24 s (g-cm)�1=2 and T �� the stress-energy tensor. Note

the relation between the linearized part of the metric g�� = ��� + h�� where ��� is
the Minkowski metric tensor and the �eld variable ���

��� � h�� � 1

2
���h ! h�� = ��� � 1

2
���� (3)

Such a �eld is convenient for the gauge condition

@��
�� = 0 (4)

It is no surprise that both Maxwell's and the linearized Einstein equations
should have radiation solutions and that both solutions waves move with the speed
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of light (c = 1 in our notation and is left out of the equation above). It is clear that
adding any solution of the form

2��� = 0; or; if @��
�� = 0; @�@

���� = 0 (5)

will work.
Try the plane-wave solution

��� = ���cosk�x
� (6)

where ��� is a constant tensor, and k� is a constant vector in the direction
of propagation, which are named the polarization tensor and the wavevector,
respectively.
(a) Show that this is a solution to equation 5, if

k�k� = 0; and ���k� = 0 (7)

meaning that ! = ck where k =
q
k2x + k2y + k2z = jkj and thus the speed of the

gravity wave is the speed of light. Note that this means in the weak �eld limit there
is no dispersion. (The c for your information later. Ignore it for this exercise.)

Now without loss of generality, we can restrict ourself to a plane wave moving
in the z-direction k� = (!; 0; 0; !) so that

��� = ���cos(!t� !z) = ���cos(kt� kz) (8)

(b) You can either show or take my word for it that equations 7 and the requirement
that h�� and ��� are symmetric means that there only only six possible independent
polarizations. Note that there are 16 components to the tensor and symmetry reduces
that to 10 independent components. The two relations of equation 7 cut the 10 to 6.
(You heard that these correspond to the �0, �1, and �2 helicity modes in class.)
(c) Two of the independent polarization solutions can be

���
�

=

2
6664
0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

3
7775 (9)

and

���



=

2
6664
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

3
7775 (10)

Show that these are traceless and transverse to the direction of propagation.
The claim is that these two are the only one of their set of six that can actually
carry energy and momentum. The others can be transformed away by gauge
transformations.
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We can return to general plane waves

�
��
�

= A��
��
�
cosk�x

�

�
��

 = A
�

��

 cosk�x

�

with energy-momentum tensors

t
��
�

= A2
�
k�k�sin2k�x

�

t
��

 = A2



k�k�sin2k�x

�

The average 
ux in the direction of propagation is

t =
1

2c
(A2

�
+A2



)!2 = �GW =c (11)

and the energy density is related to the 
ux by c. The stress-energy tensor for waves
propagating in the z-direction has for its non-zero components

T 00 =
1

c
T 0z =

1

c
T zz = c2 < A2

�
+A2



>=

1

16�

c2

G
< h2+ + h2

�
> (12)

1.3 Relative Motion

In class I showed that such gravitational plane waves caused two test particles to
oscillate relative to each other. I used the weak �eld geodesic equation

dp�

d�
=

1

2
mh��;�u

�u� (13)

or for a massive particle
du�

d�
=

1

2
h��;�u

�u� (14)

to show that a particle at rest u� = (1; 0; 0; 0) experiences no acceleration and remains
at rest. However, two particles that were separated by a distance d in a direction
transverse to the direction of propagation and aligned with the � polarization
experience a periodic variation in their position to �rst order

�l �= d� (
1

2
A�cos!t) (15)

If a typical strong (A� ' 10�18) gravity plane wave passes through the earth-
moon system (d �= 3:84�1010 cm), what is the variation in the earth-moon distance?
If laser ranging to the moon is accurate to 10 cm, can the motion be readily detected?

If the relative distance to a space craft at a distance of 5 astronomical units
(7.5�1013 cm) can be measured to 1 mm by doppler tracking, can one detect this
wave? How accurately must one measure the separation to be able to observe such a
wave? Could it be done with laser interferometry?
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1.4 E�ective tidal Force

A gravitational plane wave causes and apparent deformation of objects. We discussed
the appearance of a tube-shaped distribution of matter lying along the direction of
propagation of the plane wave. For the two linear polarizations � and 
 the tube
appears alternately squashed in the directions of the polarization axis. Speci�cally
for a plane wave propagating along the z-axis, the � polarization has at a �xed time
(for the right phase)

x(z) = r(1 � 1

2
A�cos!z)

y(z) = r(1 � 1

2
A�sin!z)

The 
 polarization would look the same but rotated 45�.
For the circular polarizations

���RH = (���
�
� i���



)eik�x

�

�
��
LH = (���

�
+ i�

��


)eik�x

�

the shape is a twisted squashed tube. Waves with the �rst circular polarization �
��
RH

have positive helicity meaning the angular momentum is parallel to the direction of
energy 
ux. Waves with the second circular polarization �

��
LH have negative helicity

meaning the angular momentum is antiparallel to the direction of energy 
ux. The
angular momentum in the wave is just 2=! times the energy in the wave.

What is the e�ective tidal force on the particles in a tubular shape for a gravity
wave of amplitude A� ' 10�18? Hint: Use the equivalence principle and calculate
the e�ective di�erential acceleration.

d2x

dt2
= �1

2
A�x0

d2

dt2
cos!t (16)

You can get a similar equation for y. Show that the radial component of the tidal
force is

fr = m
1

2
A�r0 !

2cos!t cos2� (17)

where r20 = x20 + y20 is the radial coordinate and � is the azimuthal angle to the
polarization axis.

2 Generation of Gravitational Waves

We continue brie
y with our analogy to electromagnetism. It is appropriate to note
that the relative strength of gravity to electromagnetism for a simple e�ect such as
and atomic transition of energy order E � 1 eV is GE2=e2 � 3 � 10�54. Thus
we cannot expect to �nd gravity waves being signi�cant in atomic or individual
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particle interactions but will be signi�cantly only as a bulk e�ect for a large
aggregate collection. This (equivalent to the small value of �) justi�es our weak
�eld approximation. This keeps the waves linear and with no dispersion.

The general solution to Poisson equations (1) and (2) are

2A� = 4�J�; A�(x; t) =
1

c

Z
d3x0

Z
dt0

J�(x0; t0)

jx� x0j �(t
0 + jx� x0j=c � t) (18)

integration over t0 replaces J�(x0; t0) by J�(x0; t� jx� x0j=c� t) and similarly

2��� = �16�GT ��; ��� = �16�G

4�

Z
d3x0

T ��(x0; t� jx� x0j=c � t)

jx� x0j (19)

(These were derived from the relation r2(1=jx� x0j) = �4��(x� x0).)
In considering radiation one usually divides the situation into various zones

when the size of the system radiating is smaller than a wavelength.

Zone Conditions

Near or Static d << r << �

Intermediate d << r � �

Far or Radiation Zone d << � << r

(20)

where d is the characteristic size of the radiating system, � is the wavelength, and r

is the distance to the observer.
In the far �eld region the �eld scales as 1=r and the �eld is perpendicular to

r as can be seen from the following argument. In the far �eld zone kr >> 1 so that
jx� x0j �= r � n̂ � ~x0 so that

lim
kr!1

~A!eikr

cr

Z
e�ikn̂�x

0 ~J d3x0 �=
eikr

cr

X
n

(�ik)n
n!

Z
(n̂ � ~x0)n ~J d3x0 (21)

where the second part comes from expanding exp(�ikn̂ � ~x0) in a Taylor series since
we have assumed that kd << 1 which implies that kjxj << 1.

We expect that quadrupole radiation is the lowest order radiation that gravity
can produce since all gravitational charges carry the same sign and the amplitude of
the �eld will be proportional to k3 and the energy radiated proportional to k6.

Aside: The general solution

~A =
4�ik

c

X
l;m

h
(1)

l (kr)Ylm(�; �)
Z
jl(kr

0)Y �

lm(�
0; �0) ~J d3x0 (22)

where h
(1)

l (kr) are the Hankel functions, Ylm(�; �) are the spherical harmonics, and
jl(kr) are the Bessel functions.

Making similar approximation for the distance jx � ~x0j �= r � n̂ � ~x0 for the
gravitational case, one has

��� �=
16�G

4�r

Z
d3x0T ��(t� r;x0) (23)
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In the linear approximation, T �� satis�es the gauge condition

@�T
�� = 0 (24)

which implies
@

@t
T k0 = �@lT kl and

@

@t
T 00 = �@lT 0l: (25)

We can use the �rst relationship to get

Z
T kld3x =

1

2

@

@t

Z
(T k0xl + T l0xk)d3x (26)

and the second to get

Z
(T k0xl + T l0xk)d3x =

@

@t

Z
T 00xkxld3x (27)

This can be proven by integrating the right hand side by parts. Combined these give
us Z

T kld3x =
1

2

@2

@t2

Z
T 00xkxld3x: (28)

This indicates that the integral over the stress-energy can be expressed in terms of
derivatives of T 00. This is simply conservation of energy and momentum.

Putting this back into equation (23) we have

��� �= �16�G

4�r

Z
T ��(t� r;x0) = �16�G

8�r

@2

@t2

Z
T 00(t� r;x0)d3x0 (29)

We will make two other approximations in addition to the weak �eld and the
far zone in our treatment; (1) the gravitational e�ects are relatively small so that we
can replace T 00 by � and (2) we will neglect special relativistic corrections (v=c << 1).
Note that these approximations mean that we will be in the weak �eld limit in that
the dimensionless strain

h � rschwarzschild

r

v2

c2
(30)

Thus for non-relativistic matter one has

�kl �= �16�G

8�r

@2

@t2

Z
�(t� r;x0)d3x0 (31)

This integral can be expressed in terms of the quadrupole moment tensor.

Qkl =
Z
(xkxl � 1

3
r2�lk)�(t� r;x0)d3x (32)

so that

�kl �= �16�G

8�r
f @

2

@t2
Qkl + �lk

@2

@t2

Z
r03�(t� r;x0)d3x0g (33)
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For the calculation of energy 
ux, the term proportional to �lk can be omitted
because that part of the wave carries no energy as it has the wrong polarization.

�kl �= �16�G

8�r

@2

@t2
Qkl = �16�G

8�r
�Qkl (34)

This is the lowest order term for gravitational radiation and is clearly quadrupolar
as asserted earlier. There can be higher order terms; however, in general one expects
them to be signi�cantly smaller than the quadrupole contribution.

It can be shown that the energy radiated per unit solid angle is

� d2E

dtd

=

dPower

d

= (

16�G

8�r
)2[

1

2

:::

Q
kl:::

Q
kl �

:::

Q
kl :::

Q
km
nlnm +

1

4

:::

Q
kl:::

Q
mr
nknlnmnr] (35)

This angular distribution is quite complicated except in very symmetric cases.
However, we can integrate over all solid angles to �nd the total power radiated

� dE

dt
=

G

5c5

:::

Q
kl:::

Q
kl

(36)

Now we have a general set of equations we can use to treat the case of various
cosmologically and astrophysically interesting objects. We expect gravitational
radiation to fall into one of three classes:

Sources of Gravitational Radiation

Type Source Characteristic Frequency

Periodic orbiting and oscillating objects 10�7 � 102 Hz and 102 � 105 Hz
Burst Collisions, Supernova & infall/collapse 10�1 � 104 Hz
Stochastic CGR, In
ation, Phase Transitions all

We treat these in the next subsections.

2.1 Order of Magnitude Estimates

We estimated the size of the dimensionless strain produced by a mass

h � Rschwarzschild

R

v2

c2
(37)

Now we can estimate the quadrupole moment and its third derivative to estimate the
power loss.

:::

Q
lk � GMR2

t3c
� GMv3

R
(38)
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where M , R, tc, and v are the characteristic mass, size, time scale, and velocity of
the source. Using our formula for the power radiated

� dE

dt
=

G

5c5
:::

Q
kl:::

Q
kl � G

c5
(
M

R
)2v6 � LcGW (

RSchwarzschild

R
)2(

v

c
)6 (39)

where

LcGW � c5

G
= 3:63 � 1059 erg s�1 = 2:03 � 105M�c

2s�1 (40)

If a steel rod of mass 100 tons (108 grams) and length 20 meters rotates
at its breakup speed (30 radians/sec), what is the approximate radiated power in
gravitational waves?

Show that the power in gravity waves for a system with internal power in
quadrupole motion Linternal �Mv2=tc is roughly

LGW =
L2
internal

LcGW

(41)

Since astrophysical systems are generally gravitationally bound, the virial theorem
tells us

Kinetic Energy � MR2

t2c
� jPotential Energyj � GM2

R
: (42)

So the characteristic time scale is

tc �
s

R3

GM
(43)

so that

LGW � LcGW (
RSchwarzschild

R
)5 (44)

and the gravitational wave energy radiated by a nonspherical self-gravitating system
in a characteristic time is roughly

�E � LGW tc �Mc2(
RSchwarzschild

R
)7=2: (45)

Thus the gravitational wave emission e�ciency is then

�E � �Mc2; � � (
RSchwarzschild

R
)7=2: (46)

Now we can estimate the order of magnitude for dimensionless strain of astrophysical
objects at distance r

h � �2=7
Rschwarzschild

r
� 3 � 10�18(

�

0:1
)2=7

(M=M�)

(r=10kpc)
: (47)

(10 kpc is roughly the distance to our Galactic center.)
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3 Periodic Gravitational Waves

We consider here gravitational waves produced by sources whose density changes
periodically.

3.1 Emission by a Vibrating Quadrupole

According to the equations above any system of masses with a time-dependent

quadrupole moment whose third derivative
:::

Q
kl 6= 0 is not zero will radiate power

in gravitational waves. Consider two equal masses connected by a spring - a linear
oscillating quadrupole. This is a simpli�cation of problems of interest but will give
a scale for estimating situations of interest. We can use the result that a system
of spherical masses has the same quadrupole moment as a system of point masses
located at the centers of the spherical masses. We align the masses on the z-axis a
distance b from the origin with oscillation amplitude a so that their positions are:

z = �(b+ asin!t); and z2 = b2 + 2absin!t+ a2sin2!t (48)

One can easily show that the quadrupole moment is

Qkl =
1

3

2
64�2mz2 0 0

0 �2mz2 0
0 0 4mz2

3
75 = 1

3
(1+2

a

b
sin!t+(

a

b
)2sin2!t)

2
64�2mb2 0 0

0 �2mb2 0
0 0 4mb2

3
75

(49)
Thus to �rst order in a=b (so that we only get radiation at frequency !) this gives

�kl �=
16�G

8�r

2a

3b
!2sin!(t� r)Q(a = 0)kl (50)

One can use the formula above to work out the angular distribution which
comes to a simple pattern.

� d2E

dtd

= (

16�G

8�
)2[2mab!3cos!(t � r)]2sin4� (51)

where � is the usual polar angle. Note that this is similar to EM dipole radiation
which depends on sin2�. The total emitted power is

� dE

dt
=

G

5c5
:::

Q
kl:::

Q
kl
=

32G

15c5
[mab!3cos!(t� r)]2 (52)

and averaging over a cycle yields

� dE

dt
=

G

5c5

:::

Q
kl:::

Q
kl
=

16G

15c5
[mab]2!6: (53)
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The damping rate 
GW of the oscillator due to gravity waves is de�ned as


GW � � 1

E

dE

dt
: (54)

Since each mass has kinetic energy of 1
2
m!2a2, the damping rate for this oscillator is


GW � � 1

E

dE

dt
=

32G

15c5
mb2!4 (55)

and the time for the energy to be damped to 1/e is 1=
GW . Now this is a simple
case but it allows us to make order of magnitude estimates for some more realistic
astrophysical systems.

3.1.1 Oscillating Neutron Star

A neutron star could be formed asymmetrically or it might be impacted by infalling
material such as an asteroid. Suppose that the neutron star has a mass of mns =
0:7M�, and radius Rns = 10 km and that it is initially deformed on one axis so that
�R=R � 0:1. It will oscillate on that axis as a nearly incompressible 
uid. These
parameters give the neutron star an approximate density of � � 1014 gm/cm�3 .
(Note, I have not checked to see that these are fully consistent with our formula - the
Oppenheimer-Volko� equation or the sti�er equation of state. If I or one of you have
time, then we can �x it in the solution hand out.)

How much power is radiated in gravitational waves and what is the damping
time? Is this likely to be the most e�cient damping mechanism?

Hint: It is easy to show that the oscillation frequency is roughly ! �
p
G� �

3 � 103 Hz for an incompressible 
uid. Use the relation that v =
q
@P=@� �

q
P=�

and P = Gm2=R4 and that ! � v=R. De�ne the vibration energy as

Evib =
1

2
mns(�R)

2!2 � (
�R

R
)2 � 1053 ergs (56)

3.1.2 White Dwarf, Sun, & Earth Oscillations

Gravitational radiation emitted by quadrupole vibrations might be important in the
case of novas. Nova outbursts occur on white-dwarf stars in binary systems, where
accretion from a companion star gradually accumulates nuclear fuel on the white
dwarf surface until the fuel reaches a critical mass and explodes. Among other things,
the explosion initiates vibrations in the body of the white dwarf, at characteristic
frequencies of 0.01 to 1 Hz. The energy released in a nova explosion is typically 1045

ergs, of which as much as 10% goes into the vibrational motion of the star and is
subsequently radiated in the form of gravitational waves.

What if the neutron star considered above was a white dwarf instead? How
much power would be radiated from a 10% deformation and what would be the
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characteristic decay time through the emission of gravitational radiation? Does
this follow the order of magnitude scaling laws from earlier and the numbers in the
paragraph above? Are gravity waves likely to be important to the dynamics of solar
oscillations and earth oscillations? Make a table of system (neutron star, white dwarf,
sun, earth) of the form

Table 1
Vibration GW Damping

Object Mass R RBH=R GW Power Damping Time
Neutron Star 0.7 M� 10 km
White Dwarf 0.7 M� 104 km
Sun (M�, R�) 1:99 � 1033 g 6:96 � 1010 cm 4:48 � 10�6

Earth 5:98 � 1027 g 6:38 � 108 cm 1:4 � 10�8

Note that one might consider using the excitation of vibration modes in the earth as
a gravitational wave detector. The confusion background comes from earthquakes,
volcanos and mankind.

3.2 Emission by a Rotating Quadrupole

Another periodic source of gravitational waves, which occurs very commonly in
astrophysics, is the rotating quadrupole consisting of two masses in orbits around
their common center of mass.

As the damping e�ects of gravitational waves circularizes orbits and it is
simpler to calculate, we will consider circular orbits. Since the quadrupole moment
repeats when the masses interchange sides in the orbit, the frequency of the emitted
gravitational waves is twice the orbital frequency. The angular distribution will be
relatively complicated and we skip over it but note that in the direction perpendicular
to the orbital plane the gravitational radiation will be circularly polarized while in
the plane it will be linearly polarized as in the case of the vibrating quadrupole.

The radiated power of the system is

� dE

dt
=

32G

5c5

�
m1m2

m1 +m2

�2
R4!6 =

32G

5c5
�2R4!6 (57)

where R is the separation between the masses m1 and m2 and ! is the orbital
frequency.

For an astrophysical system, such as a binary star system with circular orbits,
gravity holds the masses together and Kepler's third law gives a relationship between
the separation R and the orbital period and thus angular frequency:

!2 =
G(m1 +m2)

R3
or P = 0:545(

R

1000 km
)3=2(

M�

m1 +m2

)1=2 sec (58)

12



so that the radiated power is

� dE

dt
=

32G4

5c5R5
(m1m2)

2(m1 +m2): (59)

As the binary loses energy by gravitational waves, the distance between the
masses decreases at a rate given by

dR

dt
= � 64G3

5c5R3
m1m2(m1 +m2) (60)

at the same time the orbital frequency increases at a rate given by

d!

dt
= � 3!

2R

dR

dt
=

96

5
[
G(m1 +m2)

c2R3
]3=2

Gm1m2

c2R
=

96

5

G

c5
!3Gm1m2

R
(61)

where we have used the relationship that

E = �Gm1m2

2R
! dE

dt
=

Gm1m2

2R2

dR

dt
(62)

One can rearrange this to �nd the change in period Pb = 2�=! (frequency) of
the binary pair.

1

Pb

dPb

dt
=

3

2

1

R

dR

dt
= �3

2

1

E

dE

dt
= �96

5

G3(m1 +m2)2�

c5R4
(63)

=
1

2:61 � 107yr
(
m1 +m2

M�

)2=3
�

M�

(
1hr

Pb
)8=3 (64)

Assuming that the expressions above remain valid as R!0, show that the time
�tR!0 until R!0

�tR!0 =
5

256

c5

G3

R4
now

(m1 +m2)m1m2

�= 1:84(
R

100 km
)4(

m1 +m2

M�

)�2(
M�

�
) (65)

and that
�tR!0

Pb
� 105(

P

1s
)5=3 or

1

Pb

dPb

dt
� (105(

P

1s
)5=3)�1 (66)

Now we are in a position to calculate the gravitational radiation power, orbital
radius change, and relaxation time for some astrophysical systems.

3.2.1 Jupiter Power

As by far the largest component of the solar system quadrupole, estimate the
power emitted by Jupiter in gravitational radiation and the rate of change of its
orbit (in cm/year). (Useful numbers for this problem: orbit radius 5.2 AU =
7:8 � 108 km, period of orbit 11.9 years implying ! = 1:68 � 10�8 sec�1, mass
= 1:9� 1030 g � 10�3M�.

While you are at it, you might want to calculate the rate of change of the
earth's orbital radius due to gravity wave emission and compare it to that of other
e�ects you calculated in problem set 5.
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3.3 SuperMassive Black Holes

Our current view is that in the center of most galaxies there are supermassive (105M�

to 108M�) black holes. Occassionaly, smaller black holes or supermassive blach
holes from the merging of galaxies �nd themselves in (co-)orbit around the central
supermassive black hole. This happens at �rst because the black holes are so massive
and thus sink towards the central of the potential. Later the gravitational radiation
they emit causes them to sprial into closer and closer orbits until they eventually
merge. One can show that the quadrupole radiation from two inspiraling black holes
has the strain of

h� = 3:6� 10�22
1Gpc

r

 
M1

10M�

! 
M2

106M�

!2=3 
f

0:01Hz

!2=3

The frequency determines the orbit separation. The time at frequency f until inspiral
is

T = 1:41 � 106sec

 
0:01Hz

f

!8=3�
10M�

M1

� 
106M�

M2

!2=3

hpred = 3:4�10�22
 

f

10�2Hz

!2=3 
MBH

104M�

!5=3
x

(1 + x)1=3
1

1 �
p
1 + z

f � 104
�
M�

MBH

�
Hz

1 + z

What is the strain expected at 3 Gpc from two supermassive black holes each
with mass about 105M� with a frequency f = 0:01Hz? Roughly how long before they
inspiral to a frequency of f = 0:03Hz? Make a rough plot of strain versus frequency
with a few characteristic times called out -e.g. 1 year, 1 month, 1 week, 1 day, etc.
Use the characteristic times for the proposed LISA (laser interferometer space array)
of arond 10�4 Hz � f � 10�2 Hz.

3.3.1 Rapidly Rotating Deformed Neutron Star

For a slightly deformed, homogeneous neutron star with moment of inertia I =
2MR2=5, mass M , radius R, rotation period Pns, and ellipticity, �, the gravitational
wave luminosity is

LGW = �dE

dt
=

32G

5c5
I2�2(

2�

P
)6 (67)

� 1038erg s�1 (
I

4 � 1044g cm2
)2(

Pns

0:033sec
)�6(

�

10�3
)2 (68)

and at a time t after its birth since it will slow down

LGW � 1045erg s�1(
I

4� 1044
)1=2(

10�3

�
)(

106sec

t+ 104sec
)3=2 (69)
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3.3.2 Close Binary Stars

Table 2
Interesting Binary Sources of GW

Object Masses Distance Frequency GW Power Damping Time Strain at
M� (pc) 10�6 Hz ergs/s years Earth (10�22

Eclipsing Binaries

� Boo 1.0, 0.5 11.7 86 51
� Sco 12, 12 109 16 210
V Pup 16.5, 9.7 520 16 46
Cataclysmic Binaries

Am CVn 1.0, 0.041 100 1900 5
WZ Sge 1.5, 0.12 75 410 8
SS Cyg 0.97, 0.83 30 84 30
Binary X-ray Sources and/or Pulsars

Cyg X-1 30, 6 2500 4.1 4
PSR1913+16 1.4, 1.4 5000 70* 0.12
PSR1534+12 1.4, 1.4 0.5 54*
PSR2127+11C 1.4, 1.3 10.6 70*

* Pulsars with elliptical orbits emit signi�cantly at harmonics.
The next section will deal with these three binary pulsars.

There is a whole class of interesting binary star pairs that can be calculated
approximately. The most spectacular binary star pair known at the moment is AM
CVn (AM Canem Venticorum). Am CVn consists of a blue white dwarf and a low-
mass white dwarf in an exceptionally small orbit around each other. Their period is
17.5 minutes! Do you know which star has the bigger radius? (Table 2 tells us that
their masses are about 1 and 0.041 M�, respectively.) What do you estimate for the
ratio of the radii of the lower to higher mass star? Fill out the following table. (See
formula in next section to help with the numerical factors.)

3.3.3 Binary Pulsars

There are three known binary pulsars and these and some of their parameters are
listed in table 3.
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Table 3
Galactic Binary Pulsars

Parameter PSR 1534+12 PSR 1913+16 PSR 2127+11C
Reference Wolszczan et al. 1991 Hulse & Taylor 1974 Prince et al. 1991
Flux (400 MHz) 36 mJy 5 mJy 0.6 mJy
Distance 1:1� 0:2 kpc 7.3 kpc 10.6 kpc (in M15)
Period P 10.098 hr 7.7519 hr 8.047 hr
eccentricity 0.273677 0.61713 0.68141
M1 +M2 2.6784 M� 2.82837 M� 2.71 M�

q = M1(pulsar)=M2 0.97 � 0.03 1.04 1:0 � 0:2

P=(2 _P ) 2:5 � 108 yr 1:1� 108 yr 1:0� 108 yr
tmerge�theory 27:3 � 108 yr 3:01 � 108 yr 2:20� 108 yr
tmeas 30 � 108 yr 4:1� 108 yr 3:20� 108 yr
Table adapted from Phinney 1991 Ap J 380 L17.

As one can see the eccentricity is signi�cant for these systems. This leads to
signi�cant emission at the orbital frequency (as opposed to twice) and in harmonics.
The modi�ed energy loss equation according to Peters and Mathews is

�dE

dt
= LGW =

32G4

5c5a5
�2(m1 +m2)

3 f(�) (70)

� 3:0 � 1033erg s�1(
�

M�

)2(
m1 +m2

M�

)4=3(
Pb

1hour
)�10=3 f(�) (71)

where

f(�) =
1 + 73

24
�2 + 37

96
�4

(1 � �2)7=2
(72)

and a is the semi-major axis.
If the two masses are in an elliptical orbit with eccentricity � then the energy

emission in gravity waves rate (to a sign) is

LGW =
dE

dt
=

dE

dt
j�=0 f(�) (73)

and the angular momentum loss rate is

dJ

dt
=

dJ

dt
j�=0 g(�) = �32

5

G7=2�2(m1 +m2)3=2

a7=2
g(�) (74)

where

g(�) =
1 + 7

8
�2

(1� �2)2
(75)
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where these are averaged over the orbit.
Using Kepler's laws we �nd

1

Pb

dPb

dt
=

1

Pb

dPb

dt
j�=0 f(�) = �96

5

G3(m1 +m2)�

c5a4
f(�) (76)

For an elliptic orbit

�2 = 1 +
2EJ2

G2�3(m1 +m2)2
(77)

One can use this relationship to derive an equation for d�=dt and �nd that it is
negative, so that gravitational radiation tends to circularize an elliptical orbit.

d�

dt
= �304

15

G3� (m1 +m2)2�

a4 (1� �2)5=2

�
1 +

121

304
�2
�

(78)

and the semi-major axis a decreases at the rate

da

dt
=

dR

dt
j�=0f(�) = �64

5

G3� (m1 +m2)2

a3
f(�) (79)

In the Newtonian regime, if we orient the polarization axes along the major
and minor axes of the projection of the orbital plane, then the dimensionless strain is

h+ = 2(1 + cos2i)
�

R
[�(m1 +m2)f ]

2=3cos(2�
Z

df

dt
dt t) (80)

h� = �4cos2i �

R
[�(m1+m2)f ]

2=3sin(2�
Z

df

dt
dt t) (81)

3.4 Death Spiral

As the orbital pair loses energy through emitting gravitational waves the orbit
becomes more circular, the major axis decreases in size, and the orbital frequency
increases. The binary pair will begin a gradual spiral towards each other. The
inward motion is slow at �rst but increases rapidly as the orbit gets smaller. AS the
distance gets fairly small the rate gets large and results in a crescendo of gravitational
radiation and a death spiral that ends in their coalescence. During the death spiral
phase the gravitational radiation frequency will move higher and higher - rapidly in
an up glissando. This is a reasonable term since one can easily calculate that the
maximum frequency for a binary neutron star is about 1 kHz. It may be up to about
10 times that for optimal black holes.

Let us consider the steps leading up to the end. We will trust our results to
the point that Newtonian gravitation is a reasonable approximation. We can use the
circular orbit parameters.
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One can integrate the rate of change of the orbit radius to �nd

1

4
(R4 �R4

0) = �64G

5c5
m1m2(m1 +m2)(t� t0) (82)

where the t0 indicates the starting time of the calculation.
Earlier we derived a formula for the time remaining �tR!0 until the radius

would go to zero, if the equations remained valid. The time remaining went as

�tR!0 =
5

256

c5

G3

R4
now

(m1 +m2)2�
= [1� (

r

r0
)4]

r0

4

1

[�dR=dtjt0
(83)

Thus it is clear that the system spends most of its time at the large distance and
much less at small separations.

It is easy to show that the orbital frequency is

forbit =
!

2�
=

1

Pb
=

1

2�
[
5

256

c5

G5=3�(m1 +m2)2=3
1

tR!0 � t
]3=8 (84)

where tR!0 = t0 +�tR!0. The gravitational wave frequency will be twice forbit.
Consider two neutron stars with masses 1.4 M�orbiting at 100 km. The intial

radiated power is about 6 � 1051 erg/s. The rate of decrease of the orbit radius is
�dR=dtjt0 � 7 � 106cm=s = 70km=s. Clearly to get from 100 km to 20 km is going
to take on the order of 1 second. The formula gives 0.36 seconds. Starting from 130
km separation would take about 1 second and 200 km would take about 6 seconds.

At 200 km the orbital frequency is about 50 Hz and the orbital velocity is
about 0.1c. By 130 km these are up to 93 Hz and 0.13c and at 100 km this becomes
138 Hz and 0.289c. At 20 km the frequency is 1550 Hz and the orbital speed is
0.32c. Clearly a careful calculation will have to take into account special relativistic
e�ects but our numbers should be accurate to better than 1% at 200 km and better
than 10%. We would also have to take into account the spin-orbit coupling due to
the frame-dragging of the rotating stars and orbit. This mostly causes a beat in the
emitted radiation.

We can estimate the power radiated in gravitational waves in those last few
moments.

�E =
G

2
m1m2[

1

r0
� 1

r
] (85)

where the factor of two comes from the gravitational energy splitting between
gravitational wave and kinetic energy. With r0 = 200 km and r = 20 km one has

��E ' 1053 erg � 0:04M� (86)

which means that about 1.5% of the rest mass was radiated. Most of this
energy is released in the last states of the coalescence. An extra pulse will be
emitted when the neutrons stars collide and the resulting neutron star or black hole
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oscillations/vibrations is likely to produce even more. We consider this in the next
section.

In the May 1995 Scienti�c American article by Tvsi Piran that I handed out
in class, the author claims that two neutron stars 700 km apart take 15 minutes
before collision and and their orbital period shrinks from a �fth of a second to a few
milliseconds. Check these numbers and see what mass system one needs for this to
be true and are these numbers consistent with the quoted parameters for the three
know binary pulsars?

4 Gravitational Wave Bursts

Now we move from periodic (or quasiperiodic) case to the burst case. Any system
with a quadrupole whose third derivative is non-zero will radiate.

4.1 Little hits very Big

For illustration we will �rst consider a small particle falling towards a very large mass.
This is just so that we can neglect the motion of the large mass and its radiation.
That should make the e�ects clearer to understand. In the next section we treat
this in the fashion of reduced mass. The energy loss can be found by evaluating the
quadrupole radiation loss formula and using the quadrupole matrix for a single mass
at a distance z on the z axis we found for in the vibrating quadrupole section above.

Qkl =

2
64
�1

3
mz2 0 0
0 �1

3
mz2 0

0 0 2
3
mz2

3
75 (87)

Hence,

� dE

dt
=

G

5c5

:::

Q
kl:::

Q
kl
=

2Gm2

15c5
(6 _z�z + 2z

:::

z)2 (88)

Now we need to evaluate the various derivatives of z. Here we consider the
case that the small test mass m is falling from rest at a great distance (i.e. in�nity)
as a result of gravitational attraction to the large stationary mass M . Later you can
consider how to treat a more general case of interactions. Conservation of energy
gives

1

2
m _z2 =

GmM

jzj (89)

and Newtonian law of universal interaction and the equivalence principle gives

�z =
GM

z2
(90)

Taking the derivative with respect to time

:::

z = �2GM

z3
_z = �2GM

jzj7=2 (2GM)1=2 (91)
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Now we can estimate the energy loss by integrating dE along the particle
trajectory.

�E = �
Z R

1

1

jzj9=22Gm
2 15c5(2GM)5=2dz = � 1

R7=2

4Gm2

105c5
(2GM)5=2 (92)

Clearly the closer the test particle gets the more radiation energy it emits. The
question is where to cut o�? Clearly, the Schwarzschild radius of the large mass is a
hard cut o� since none of the gravitational waves would escape.

�Emax = � 2

105
mc2(

m

M
) �= �0:019mc2(

m

M
) (93)

In the next section we will see that this may be as much as roughly a factor of two
over more detailed calculations but does neglect the radiation from the oscillations of
the system as the masses coalesce.

This is a moderately e�cient gravitational wave generator. Consider a one
solar mass object falling into a 10 M�black hole.

� =
�E

mc2
= 0:019(

m

M
) = 0:002 (94)

In the next section we handle the reduced mass case and get essentially same
answer.

4.2 Collision of Two Objects

Consider two point masses m1 and m2 falling towards each other under the in
uence
of gravity from rest at in�nity. For this case we will assume that the collision is head
on and that they move on the x axis. The center of mass is x = 0.

m1x1 = �m2x2 = �x (95)

where
x � x1 � x2; � � m1m2

M
; M = m1 +m2 (96)

Since
m1x

2
1 +m2x

2
2 = �x2; (97)

Qxx =
2

3
�x2; Qyy = Qzz = �1

3
�x2 (98)

The equation of motion is

�x = �GM

x2
(99)

and
_x2

2
=

GM

x
; (100)
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yielding
:::

Qxx = �4

3
G�M

_x

x2
: (101)

Using the formula for radiated power

� dE

dt
=

G

5c5

D:::
Q2
xx +

:::

Q2
yy +

:::

Q2
zz

E
=

8

15

G

c5
�2M2

*
_x2

x4

+
: (102)

This integral will diverge as x!0. However, we know that this non-relativistic
treatment will fail as we get to the Schwarzschild radius as the gravitational radiation
will not escape. If we cut the integral o� at xmin = 2GM=c2

�E =
2

105

�2c2

M
: (103)

Now we should expect that this is an overestimate as the closer one gets to the
Schwarzschild radius the less gravitational wave energy escapes but we also ignored
other relativistic e�ects. The fall of a test particle into Schwarzschild black hole of
mass M gives

�E = 0:0104
�2c2

M
: (104)

This is roughly half of our semi-classical approach. Epply and Smart have calculated
the radiation form the head-on collision of two equal-mass Schwarzschild black holes
to �nd

�E = 0:001Mc2 (105)

however, there is uncertainty which is at the level of a factor of 2 so it might be in
reasonable agreement with the formula above. We can presume that there is more
radiation if the collision is not head-on or if there is signi�cant angular momentum
in the system.

How would you do this calculation for two particles colliding if in addition
to the gravitational attraction, they had signi�cant peculiar velocity? For example,
gravitational bremsstrahlung between an electron and proton or two protons in a hot
plasma.

The frequency spectrum from a burst of gravitational waves will clearly not be
periodic or quasiperiodic. Instead it will be much like EM bremsstrahlung radiation.
Modes will be excited from low frequencies right on up to the inverse of the fastest
time in collision.

�E =
Z

dE

dt
dt =

G

5c5

Z
:::

Q
kl:::

Q
kl
dt (106)

The total energy radiated during the collision is

�E =
Z

dE

dt
dt =

G

5c5

Z
1

�1

:::

Q
kl:::

Q
kl
dt (107)

=
1

10�

G

c5

Z
1

�1

dt

Z
1

�1

d!

Z
1

�1

d!0 ~Qkl(!) ~Qkl(!0)ei(!�!
0)t (108)
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where ~Qkl(!) is the fourier transform of
:::

Q
kl
:

~Qkl(!) =
1p
2�

Z
1

�1

:::

Q
kl
ei!tdt; and

:::

Q
kl
=

1p
2�

Z
1

�1

~Qkl(!)e�i!tdt; (109)

Parseval's theorem gives

dE

d!
=

2

5

G

c5
j ~Qkl(!)j2 (110)

For this case of two particles coming together under the in
uence of gravity in
the low frequency regime

dE

d!
!

211=3�(1
3
)2

5�37=3
G

c5
(GM!)4=3�2 as !!0 (111)

The high frequency cut o� corresponds to the time scale at the Schwarzschild horizon.
The �gure handed out in class shows a representative spectrum of this type.

4.3 GW from Non-Spherical Collapse

One promising source of gravitational radiation is the non-spherical collapse of stellar
cores (e.g. supernova). Detailed calculations are clearly very complicated. We
consider a highly idealized symmetric case to get an order of magnitude estimate of
the e�ect. Consider the Newtonian collapse of a homogeneous spheroid or ellipsoid.

� dE

dt
=

2

375

GM2

c5

D
(
:::

a2 � :::

c2)2
E

(112)

where a and c are the major and minor semi-axes. This collapsing con�guration will
give out radiation in proportion to the fourth power of the angular momentum.

�E � (
J

GM2=c
)4Mc2 (113)

so with a lot of angular momentum the e�ciency can be signi�cant.
Estimate the e�ciency � = �E=Mc2 in the formation of a remnant with the

angular momentum of the Crab pulsar J � 2 � 1047 erg s�1and for the pulsar PSR
1937+214 with J � 4� 1048 erg s�1.

5 Chaotic Gravitational Waves

The �rst set of chaotic gravitational waves that we encountered were the potential
Cosmic Gravity Wave Thermal Background which you estimated would have an
e�ective temperature of about 0.9 K. In a moment we will see how this could have
come about; however, we should �rst consider how these might have been erased
(stretched to very long wavelengths) and replaced by a new chaotic �eld by cosmic
in
ation.
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5.1 Gravitons from In
ation

We saw in a previous lecture that in
ation, in addition to producing density
(scalar) 
uctuations, would produce a random, chaotic �eld of gravitational (tensor)

uctuations. While these are outside the event (particle) horizon they are essentially
frozen 
uctuations in curvature

�ln(a) =
��

�+ P
(114)

which Bardeen showed was a gauge invariant quantity. To �rst order we expect that
these curvature 
uctuations will be produced with roughly equal amplitude and thus
potential 
uctuations with dimensionless strain of order

(A�;
)k = (h+;�)k �
2p
�

Hinflation

MP lanck

(115)

These 
uctuations started their existence as part of the universe's wave function and
as individual gravitons.

Once the universe is su�ciently old these curvature 
uctuations were free to
propagate as gravitational waves. That happens when a given graviton mode re-
enters the horizon and the tensor metric 
uctuations then propagate as gravitons.
They also begin to redshift away due to the expansion of the universe.

The energy density of a chaotic �eld of gravitational waves has an energy
density

�graviton =< _A2
�
+ _A2



>=

_h2+ + _h2
�

16�G
(116)

or in power spectrum

�graviton =
1

16�G

Z
[(h+)

2
k + (h�)

2
k]kdk: (117)

This leads us to the estimate of energy density power spectrum

k
d�graviton

dk
=

k2[(h+)2k + (h�)2k]

16�G
(118)

Thus for the radiation-dominated phase of the universe the change in the energy
density at each wavelength is proportional to a�2. .....argument of why as energy
per mode/wavelength is originally !2A2 and it is redshifted away for a longer time
inversely proportional to !, one �nds that for modes entering the horizon during
radiation dominated phase all have equal energy density per mode (logarithmic
interval) in � .... Thus there is over the range of wavelengths 1010to1026 cm an
essentially 
at energy density or a dimensionless strain falling as / !�2 / �2.
For longer wavelengths the mode entered during the matter-dominated phase and
the energy density rises proportional to � until one reaches the horizon. thus the
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dimensionless strain grows proportional to the wavelength / !�1 / �. Outside the
horizon the dimensionless strain is (constant) equal to the value set by the expansion
rate of in
ation divided by the Planck mass (to the factor 2=

p
�. See Figure xx.

for an example of the gravitational wave spectrum expected for a sample model of
in
ation.

We can estimate the present (after expansion) strain of in
ation epoch
gravitational waves as a function of wavelength

h0 � 
1=2



�0H0

c
(
Hinf

mplc2
)2 (119)

Thus a detector operating at a wavelength of �0 = 103 km, H0�0=c � 10�20. The
density in radiation 

 � 10�4, so h0 � 10�20(Hinf=mplc

2)2.

5.2 Gravitational Waves from Thermal Collisions

We know that gravitational radiation is only emitted when particles actually undergo
accelerations. In thermal plasmas, which are common in astrophysics and cosmology,
there are thermal collisions - usually coloumb and elastic scattering - frequently. The
energy per unit frequency interval emitted as gravitational waves in a collision of
particles is

dE

d!
=

G

2�

X
in;out

(�1)in=outmnmn

1 + �2
nm

(1� �2
nm)

1=2
ln(

1 + �nm

1� �nm
) (120)

where �nm is the relative velocity between particles n and m. For non-relativistic
two-body scattering this reduces to

dE

d!
=

8G

5�
�2 v4 sin2� (121)

where � is the usual reduced mass, v is the relative velocity, and � is the scattering
angle in the center-of-mass frame.

The gravitational radiation produced by the collisions in a plasma or gas can
be obtained by summing the radiated energies per collision, provided the collisions
are incoherent (i.e. there is more time between collisions than it takes to radiate so
that they do not interfere with each other coherently). This condition is that that
we are considering radiation with !GW >> !c where !c is the collision frequency per
particle. In the incoherent regime

dE

d!
=

8G

5�

X
a;b

�2abnanb

*
v2ab

Z
d�ab

d

sin2� d


+
(122)

where na and nb are the number densities of particles of type a and b, d�ab=d
 is
the center-of-mass-system di�erential scattering cross-section. The sum runs over all
paris of particles and the average is taken over all collisions.
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5.2.1 GW from a Plasma

As an example we calculate the gravitational radiation emitted by Coulomb scattering
in a plasma. The Rutherford scattering we can retcross-section is

d�ab

d

=

q2aq
2
b

4v4ab�
2
absin

4(�=2)
(123)

The integral over � must be cut o� at a minimum angle determined by the Debye
screening of the Coulomb force at large impact parameters;

Z
d�ab

d

sin2� d
 =

4�q2aq
2
b ln(1=�min)

v4ab�
2
ab

(124)

To average over collisions we must �nd < vab >, as one power is left. For a Maxwell-
Boltzmann distribution

hvabi = 2(
2kT

��ab
)1=2 (125)

Typically ln(1=�min) � 10. For a plasma of completely ionized hydrogen we must take
into account electron-proton and electron-electron collisions. (Why don't we worry
about proton-proton and electron-helium plus proton-helium collisions?)

dP

d!
=

64Gn2ee
4

5c5
(
2kT

��ab
)1=2 (1 +

p
2) ln(1=�min) (126)

The electron collision frequency can be estimated as

!c �
e4ne < v >

(kT )2
� e4ne

(kT )3=2m
1=2
e

: (127)

5.2.2 GW from the Sun & Stars

Now let us apply this to the hydrogen plasma in the solar or a stellar core. Within
a volume of roughly 2 � 1031 cc this plasma has T ' 107 K, ne ' 3 � 1025 cc, and
ln(1=�min) � 4. The collision frequency is roughly 1015 s�1, which is three orders
of magnitude less than the thermal frequency !thermal = kT=�h � 1018 s�1, so that
an estimate of the total power produced in gravitational radiation can be found by
multiplying by V kT=�h. This gives about 108 watts or 100 megawatts.

5.2.3 GW from the Early Universe Plasma

We could do this same calculation for the early universe. What would be power in
gravitational radiation produced by thermal collisions of the plasma at the time of
nucleosynthesis? (Take a time of 1 sec and kT = 1 MeV.) We neglected photons in
the plasma calculation above, should we take them into account here? How far back
do we have to go in the universe before there is good thermal interaction between the
gravitons and other constituents of the universe?
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5.2.4 GW from the ElectroWeak Phase Transition

Extra gravitational radiation could be produced during the ElectroWeak Phase
Transition (as well as other phase transitions) over the simple plasma conditions
due to the traveling domain wall of the phase transition as well as their collisions
with each other. ...

5.2.5 GW from Cosmic Strings

Due to the high tension equal to the mass per unit length � in cosmic strings, they
both try to straighten out at the speed of light as well as have oscillations and traveling
waves. These lead to the copious production of gravity waves by strings.

We can make a rough order of magnitude estimate of the gravitational radiation
from cosmic strings. Most radiation will come from oscillating loops which are formed
when a string crosses itself. A loop naturally forms. Loops surviving to epoch given
by time t in the radiation era will have a typical size l � G�t and will produce
gravitational waves of frequency ! � 1=l and energy density

�GW�s = ( _Mt)n(l) ' � ln(l) (128)

where n(l) is the density of loops larger than l. During the radiation dominated era

n(l) � t�3=2l�3=2 (129)

and thus

�GW�s '
(G�)1=2

Gt2
(130)

Since the energy density in relativistic radiations scales as a�4 / t�2 and
is essentially the critical density during the radiation dominated error, we have
�
 � 1=(30Gt2),


GW�s ' 30(G�)1=2

 = 6 � 10�7h�2(G�=10�6)1=2 (131)

A more precise calculation (Brandenberger et al. 1986) gives a slightly lower estimate


GW�s = 4 � 10�8h�2
�10 (G�=10�6)1=2 (132)

Calculate the limit that is set by precision pulsar timing, on the energy density
of gravity waves with frequencies of 1/4 yr�1. Five kpc away is PSR 1937+21
discovered by Don Backer which has had a steady 1.6 ms pulse for four years. The
time between the main pulse and an interpulse is given as 744.9 plus or minus 1.3
microseconds over those four years. It is part of a group of pulsars whose relative
timing is good to about 3 microseconds. Does this come close to the expected signal
from GUT cosmic strings? Do more years of observation help?

Hint: Calculate the strain needed to change the timing by 1 microsecond
(distance = 5 kpc). Next calculate the energy density for gravitational waves with
wave length of 4 light years and compare that to �c to get 
GW .
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6 Anisotropies from Gravitational Waves

What is the typical CBR anisotropy expected from a long wavelength gravity wave in
which we are immersed? (Calculate a numerical value that sets the scale for the mean
expected rms 
uctuation if the energy scale of in
ation at current horizon crossing
is the GUT scale, �rst for the quadrupolar term due to the gravity wave in which
we currently �nd ourselves and then for the chaotic �eld �lling the universe. What
would we expect for the apparent random velocity dispersion of clusters of galaxies
relative to each other due to this chaotic �eld of gravity waves?

We expect the frequency shift for entering photons to be given the di�erence
in the dimensionless strain at the point of reception and the point of emission.

�T

T
= z(�; �) =

1

2
(hr � he) (1 � cos�) cos2� (133)

where hr and he are the dimensionless strain at the receiver and emitter respectively
and theta is the angle between the line of sight and the direction of propagation of
the plane wave (n̂ � ~k) and � is the azimuthal angle around the direction of motion
relative to the polarization of the wave.

For a random chaotic �eld we can estimate the resulting mean square amplitude
of temperature or velocity variations as

D
z2
E
=
�
�T

T

�
=

1

3�3
�GW !�2 (134)

where 5/8 of this is produced by the quadrupole.
Consider the random chaotic �eld produced by in
ation which will have

< A >= 0 but will have an rms value

�
(
�T

T
)2
�
=

1
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!hH�1

0
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' !2h2
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0

� 8�G�GW
H2

0

' 3
GW (135)
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